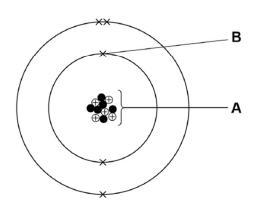


2021 ASSESSMENT MATERIALS

GCSE CHEMISTRY


Chemistry Test 1: Atomic structure and the periodic table and Bonding, structure and the properties of matter (Foundation)

Total number of marks: 36

0 1 This question is about atomic structure.

Figure 1 represents an atom of element Z.

Figure 1

0 1.1 Name the parts of the atom labelled **A** and **B**.

Choose answers from the box.

[2 marks]

electron	neutron	nucleus	proton
----------	---------	---------	--------

0 1 . 2 Which particle has the lowest mass?

Choose the answer from the box.

[1 mark]

electron	neutron	nucleus	proton

0 1 This question is about the elements in Group 7 of the periodic table.

Table 1 shows the melting points and boiling points of some of the elements.

Table 1

Element	Melting point in °C	Boiling point in °C
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

0 1. 1	What is the state of bromine at 100 °C?	
	Use Table 1 .	[4 mark]
	Tick (✓) one box.	[1 mark]
	Gas	
	Liquid	
	Solid	
0 1.2	What temperature does chlorine gas condense at to form a liquid?	
	Use Table 1 .	[1 mark]
	Temperature = °C	
0 1.3	Complete the sentences.	[2 marks]
	Going down Group 7 the melting points	
	This is because the size of the molecules increases so the	
	intermolecular forces	
	A teacher investigated the reaction of iron with chlorine.	
	Figure 1 shows the apparatus used.	
	Figure 1	
CI	hlorine gas in — Excess chlorin gas out	e

Heat

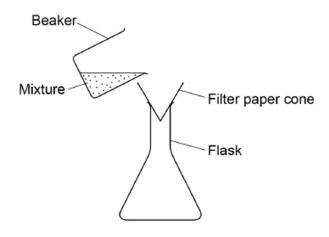
Glass tube

0 1.4	Why did the teacher do the investigation in a fume cupboard? [1 mark]
	Tick (✓) one box.
	Chlorine gas is coloured.
	Chlorine gas is flammable.
	Chlorine gas is toxic.
0 1.5	The word equation for the reaction is:
	iron + chlorine \rightarrow iron chloride
	Iron chloride is a solid.
	The teacher weighed the glass tube and contents:
	before the reaction
	after the reaction.
	What happened to the mass of the glass tube and contents during the reaction?
	Give one reason for your answer. [2 marks]
	The mass of the glass tube and contents
	Reason

The teacher repeated the investigation with bromine gas and with iodine gas.

Table 2 shows the results.

Table 2


Element	Observation
Chlorine	Iron burns vigorously with an orange glow
Bromine	Iron burns with an orange glow
lodine	Iron slowly turns darker

0 1.6	Fluorine is above chlorine in Group 7.		
	Predict what you would observe when fluorine gas	s reacts with iron.	
	Use Table 2.		[1 mark]
0 1.7	Balance the equation for the reaction between iro		[1 mark]
	2Fe + $_$ Br ₂ \rightarrow 2	FeBr ₃	
0 1	This question is about mixtures.		
0 1.1	Substances are separated from a mixture using d	ifferent methods.	
	Draw one line from each substance and mixture t	-	tion. 3 marks]
	Substance and mixture	Method of separation	
		Chromatography	
	Ethanol from ethanol and water		7
		Crystallisation	
			7
	Salt from sea water	Electrolysis	
		Filtration]
	The different colours in black ink		_
		Fractional distillation	

0 1 . 2 A student filters a mixture.

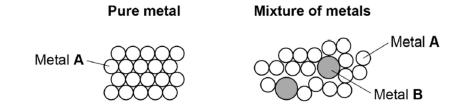
Figure 1 shows the apparatus.

Figure 1

Suggest one improvement to the apparatus.

[1 mark]

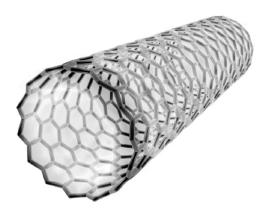
0 1 . 3 Complete the sentences.


Choose answers from the box.

[2 marks]

	condense	evaporate	freeze	melt	solidify	
In	simple distillatio	on, the mixture is h	neated to make t	the liquid		.•
Т	he vapour is ther	n cooled to make i	t			

Figure 2 shows the arrangement of atoms in a pure metal and in a mixture of metals.


Figure 2

0 1.4	Calculate the percentage of metal B atoms in the mixture of metals shown in Figure 2 .	
		[2 marks]
	Percentage of metal B atoms =	%
0 1.5	What is a mixture of metals called?	[1 mark]
	Tick one box.	
	An alloy	
	A compound	
	A molecule	
	A polymer	
0 1.6	Why is the mixture of metals in Figure 2 harder than the pure metal?	[1 mark]
	Tick one box.	
	The atoms in the mixture are different shapes.	
	The layers in the mixture are distorted.	
	The layers in the mixture slide more easily.	
	The mixture has a giant structure.	

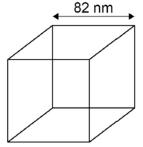
- 1 0 This question is about materials and their properties.
- 1 0 . 1 Figure 13 shows a carbon nanotube.

Figure 13

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.

Explain why carbon nanotubes conduct electricity.


[2 marks]

Zinc oxide can be produced as nanoparticles and as fine particles.

1 0 . 3 A nanoparticle of zinc oxide is a cube of side 82 nm

Figure 15 represents a nanoparticle of zinc oxide.

Figure 15

	Calculate the surface area of a nanoparticle of zinc oxide.
	Give your answer in standard form. [3 marks]
	Surface area = nm²
1 0 . 4	Some suncreams contain zinc oxide as nanoparticles or as fine particles.
	Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams. [1 mark]
0 8	This question is about structure and bonding.
0 8.1	Which two substances have intermolecular forces between particles? [2 marks] Tick (✓) two boxes.
	Diamond
	Magnesium
	Poly(ethene)
	Sodium chloride
	Water

0 8. 2 Table 5 shows the structures of three compounds.

Table 5

Diagrams not to scale

Compound	Structure
Carbon dioxide	Key C
Magnesium oxide	Key O ² - Mg ²⁺
Silicon dioxide	Key O Si

Compare the structure and bonding of the three compounds:

- carbon dioxide
- magnesium oxide
- silicon dioxide.

[6 marks]